Adaptive Optics Take Clearest Pictures Of The Sun Yet

It’s sometimes easy to forget that the light in the sky is an actual star. With how reliable it is and how busy we tend to be as humans, we can take that incredible fact and stow it away and largely go on with our lives unaffected. But our star is the thing that gives everything on the planet life and energy and is important to understand. Humans don’t have a full understanding of it either; there are several unsolved mysteries in physics which revolve around the sun, the most famous of which is the coronal heating problem. To help further our understanding a number of scientific instruments have been devised to probe deeper into it, and this adaptive optics system just captures some of the most impressive images of it yet.

Adaptive optics systems are installed in terrestrial telescopes to help mitigate the distortion of incoming light caused by Earth’s atmosphere. They generally involve using a reference source to measure these distortions, and then make changes to the way the telescope gathers light, in this case by making rapid, slight changes to the telescope’s mirror. This system has been installed on the Goode Solar Telescope in California and has allowed scientists to view various solar phenomena with unprecedented clarity.

The adaptive optics system here has allowed researchers to improve the resolution from the 1000 km resolution of other solar telescopes down to nearly the theoretical limit of this telescope—63 km. With this kind of resolution the researchers hope that this clarity will help shine some light on some of the sun’s ongoing mysteries. Adaptive optics systems like this aren’t just used on terrestrial telescopes, either. This demonstration shows how the adaptive optics system works on the James Webb Space Telescope.

Thanks to [iliis] for the tip!

Hackaday Links Column Banner

Hackaday Links: May 4, 2025

By now, you’ve probably heard about Kosmos 482, a Soviet probe destined for Venus in 1972 that fell a bit short of the mark and stayed in Earth orbit for the last 53 years. Soon enough, though, the lander will make its fiery return; exactly where and when remain a mystery, but it should be sometime in the coming week. We talked about the return of Kosmos briefly on this week’s podcast and even joked a bit about how cool it would be if the parachute that would have been used for the descent to Venus had somehow deployed over its half-century in space. We might have been onto something, as astrophotographer Ralf Vanderburgh has taken some pictures of the spacecraft that seem to show a structure connected to and trailing behind it. The chute is probably in pretty bad shape after 50 years of UV torture, but how cool is that?

Parachute or not, chances are good that the 495-kilogram spacecraft, built to not only land on Venus but to survive the heat, pressure, and corrosive effects of the hellish planet’s atmosphere, will at least partially survive reentry into Earth’s more welcoming environs. That’s a good news, bad news thing: good news that we might be able to recover a priceless artifact of late-Cold War space technology, bad news to anyone on the surface near where this thing lands. If Kosmos 482 does manage to do some damage, it won’t be the first time. Shortly after launch, pieces of titanium rained down on New Zealand after the probe’s booster failed to send it on its way to Venus, damaging crops and starting some fires. The Soviets, ever secretive about their space exploits until they could claim complete success, disavowed the debris and denied responsibility for it. That made the farmers whose fields they fell in the rightful owners, which is also pretty cool. We doubt that the long-lost Kosmos lander will get the same treatment, but it would be nice if it did.

Continue reading “Hackaday Links: May 4, 2025”

Hackaday Links Column Banner

Hackaday Links: January 5, 2025

Good news this week from the Sun’s far side as the Parker Solar Probe checked in after its speedrun through our star’s corona. Parker became the fastest human-made object ever — aside from the manhole cover, of course — as it fell into the Sun’s gravity well on Christmas Eve to pass within 6.1 million kilometers of the surface, in an attempt to study the extremely dynamic environment of the solar atmosphere. Similar to how manned spacecraft returning to Earth are blacked out from radio communications, the plasma soup Parker flew through meant everything it would do during the pass had to be autonomous, and we wouldn’t know how it went until the probe cleared the high-energy zone. The probe pinged Earth with a quick “I’m OK” message on December 26, and checked in with the Deep Space Network as scheduled on January 1, dumping telemetry data that indicated the spacecraft not only survived its brush with the corona but that every instrument performed as expected during the pass. The scientific data from the instruments won’t be downloaded until the probe is in a little better position, and then Parker will get to do the whole thing again twice more in 2025. Continue reading “Hackaday Links: January 5, 2025”

Hackaday Links Column Banner

Hackaday Links: December 22, 2024

Early Monday morning, while many of us will be putting the finishing touches — or just beginning, ahem — on our Christmas preparations, solar scientists will hold their collective breath as they wait for word from the Parker Solar Probe’s record-setting passage through the sun’s atmosphere. The probe, which has been in a highly elliptical solar orbit since its 2018 launch, has been getting occasional gravitational nudges by close encounters with Venus. This has moved the perihelion ever closer to the sun’s surface, and on Monday morning it will make its closest approach yet, a mere 6.1 million kilometers from the roiling photosphere. That will put it inside the corona, the sun’s extremely energetic atmosphere, which we normally only see during total eclipses. Traveling at almost 700,000 kilometers per hour, it won’t be there very long, and it’ll be doing everything it needs to do autonomously since the high-energy plasma of the corona and the eight-light-minute distance makes remote control impossible. It’ll be a few days before communications are re-established and the data downloaded, which will make a nice present for the solar science community to unwrap.

Continue reading “Hackaday Links: December 22, 2024”

Catching The View From The Edge Of Space

Does “Pix or it didn’t happen” apply to traveling to the edge of space on a balloon-lofted solar observatory? Yes, it absolutely does.

The breathtaking views on this page come courtesy of IRIS-2, a compact imaging package that creators [Ramón García], [Miguel Angel Gomez], [David Mayo], and [Aitor Conde] recently decided to release as open source hardware. It rode to the edge of space aboard Sunrise III, a balloon-borne solar observatory designed to study solar magnetic fields and atmospheric plasma flows.

Continue reading “Catching The View From The Edge Of Space”

Solar Orbiter Takes Amazing Solar Pictures

There’s an old joke that they want to send an exploratory mission to the sun, but to save money, they are going at night. The European Space Agency’s Solar Orbiter has gotten as close as anything we’ve sent to study our star on purpose, and the pictures it took last year were from less than 46 million miles away. That sounds far away, but in space terms, that’s awfully close to the nuclear furnace. The pictures are amazing, and the video below is also worth watching.

Because the craft was so close, each picture it took was just a small part of the sun’s surface. ESA stitched together multiple images to form the final picture, which shows the entire sun as 8,000 pixels across. We’ll save you the math. We figure each pixel is worth about 174 kilometers or 108 miles, more or less.

Continue reading “Solar Orbiter Takes Amazing Solar Pictures”

Hackaday Links Column Banner

Hackaday Links: August 25, 2024

The Sun has been remarkably active lately, so much so that it might have set a new sunspot record. According to the sun watchers at the Space Weather Prediction Center, on August 8, the Solar Dynamics Observatory snapped a picture that was positively bedazzled with sunspots. Counting methods vary, but one count put the sunspot number at a whopping 337 that day. That would be the largest number since 2001, during the peak of Solar Cycle 23. The sunspot number is highly correlated with solar storms and coronal mass ejections; more spots mean more magnetic activity and more chance for something to go very, very wrong. We’ve been pretty lucky so far with Solar Cycle 25; despite being much more active than the relatively lazy Cycle 24 and much stronger than predicted, most of this cycle’s outbursts have been directed away from Earth or only dealt us a glancing blow. Seeing all those spots, though, makes us think it’s only a matter of time before we get hit with something that does more than make pretty lights.

Continue reading “Hackaday Links: August 25, 2024”